3,494 research outputs found

    Probing Electroweak Symmetry Breaking Mechanism at the LHC: A Guideline from Power Counting Analysis

    Full text link
    We formulate the equivalence theorem as a theoretical criterion for sensitively probing the electroweak symmetry breaking mechanism, and develop a precise power counting method for the chiral Lagrangian formulated electroweak theories. Armed with these, we perform a systematic analysis on the sensitivities of the scattering processes W±W±→W±W±W^\pm W^\pm \rightarrow W^\pm W^\pm and qqˉ′→W±Zq\bar{q}'\rightarrow W^\pm Z for testing all possible effective bosonic operators in the chiral Lagrangian formulated electroweak theories at the CERN Large Hadron Collider (LHC). The analysis shows that these two kinds of processes are "complementary" in probing the electroweak symmetry breaking sector.Comment: Extended version, 11-page-Latex-file and 3 separate PS-Figs. To be Published in Mod.Phys.Lett.

    Hadronic Transition chi(c1)(1P) to eta(c) plus two pions at the Beijing Spectrometer BES and the Cornell CLEO-c

    Full text link
    Hadronic transitions of the chi(cj)(1P) states have not been studied yet. We calculate the rate of the hadronic transition chi(c1)(1P) to eta(c) plus two pions in the framework of QCD multipole expansion. We show that this process can be studied experimentally at the upgraded Beijing Spectrometer BES III and the Cornell CLEO-c.Comment: 6 pages RevTex4(two-column). Version published in Phys. Rev. D 75, 054019 (2007

    QCD Multipole Expansion and Hadronic Transitions in Heavy Quarkonium Systems

    Full text link
    We review the developments of QCD multipole expansion and its applications to hadronic transitions and some radiative decays of heavy quarkonia. Theoretical predictions are compsred with updated experimental results.Comment: 23 pages, 7 figures. Some typos corrected, and 3 references adde

    Prospects for detection of Υ(1D)→Υ(1S)ππ\Upsilon(1D) \to \Upsilon(1S) \pi \pi via Υ(3S)→Υ(1D)+X\Upsilon(3S) \to \Upsilon(1D) + X

    Full text link
    At least one state in the first family of D-wave bbˉb \bar b quarkonium levels has been discovered near the predicted mass of 10.16 GeV/c2c^2. This state is probably the one with J=2. This state and the ones with J=1 and J=3 may contribute a detectable amount to the decay Υ(1D)→Υ(1S)ππ\Upsilon(1D) \to \Upsilon(1S) \pi \pi, depending on the partial widths for these decays for which predictions vary considerably. The prospects for detection of the chain Υ(3S)→Υ(1D)+X→Υππ+X\Upsilon(3S) \to \Upsilon(1D) + X \to \Upsilon \pi \pi + X are discussed.Comment: 4 pages, LaTeX, 1 figure, to be published in Phys. Rev. D, comment added after Eq. (2

    Search for Bc(ns)B_c(ns) via the Bc(ns)→Bc(ms)π+π−B_c(ns)\to B_c(ms)\pi^+\pi^- transition at LHCb and Z0Z_0 factory

    Full text link
    It is interesting to study the characteristics of the whole family of BcB_c which contains two different heavy flavors. LHC and the proposed Z0Z^0 factory provide an opportunity because a large database on the BcB_c family will be achieved. BcB_c and its excited states can be identified via their decay modes. As suggested by experimentalists, Bc∗(ns)→Bc+γB_c^*(ns)\to B_c+\gamma is not easy to be clearly measured, instead, the trajectories of π+\pi^+ and π−\pi^- occurring in the decay of Bc(ns)→Bc(ms)+π+π−B_c(ns)\to B_c(ms)+\pi^+\pi^- (n>mn>m) can be unambiguously identified, thus the measurement seems easier and more reliable, therefore this mode is more favorable at early running stage of LHCb and the proposed Z0Z^0 factory. In this work, we calculate the rate of Bc(ns)→Bc(ms)+π+π−B_c(ns)\to B_c(ms)+\pi^+\pi^- in terms of the QCD multipole-expansion and the numerical results indicate that the experimental measurements with the luminosity of LHC and Z0Z^0 factory are feasible.Comment: 12 pages, 1 figures and 4 tables, acceptted by SCIENCE CHINA Physics, Mechanics & Astronomy (Science in China Series G

    The State of the Art and Perspective of Information Systems in China

    Get PDF

    Complex Behavior in Simple Models of Biological Coevolution

    Full text link
    We explore the complex dynamical behavior of simple predator-prey models of biological coevolution that account for interspecific and intraspecific competition for resources, as well as adaptive foraging behavior. In long kinetic Monte Carlo simulations of these models we find quite robust 1/f-like noise in species diversity and population sizes, as well as power-law distributions for the lifetimes of individual species and the durations of quiet periods of relative evolutionary stasis. In one model, based on the Holling Type II functional response, adaptive foraging produces a metastable low-diversity phase and a stable high-diversity phase.Comment: 8 pages, 5 figure
    • …
    corecore